الگوریتم های تاکننده هندسی
دسته: ریاضی، کاردستی کاغذیچگونه اتصالات، تکههای کاغذ و چندوجهیها تا میشوند؟ مسائل تاکردن و بازکردن از زمان Albrecht Dürer در اوایل سال 1500 پیشنهاد شده است، اما بهتازگی در ادبیات ریاضیات مورد مطالعه قرار گرفتهاند. در طول یک دهه گذشته، موجی از جذابیتها در این مسائل، با کاربردهای مختلفی از تکنیک تاکردن رباتیک تا پروتئین ایجاد شده است.
نویسندگان کتاب “الگوریتمهای تاکننده هندسی” صدها دستآورد و بیش از 60 “مسائل باز” حلنشده را در این نگاه جامع به ریاضیات تاکردن، با تاکیدی بر جنبههای الگوریتمی و محاسباتی، ارائه میدهند.
نویسندگان کتاب “الگوریتمهای تاکننده هندسی” صدها دستآورد و بیش از 60 “مسائل باز” حلنشده را در این نگاه جامع به ریاضیات تاکردن، با تاکیدی بر جنبههای الگوریتمی و محاسباتی، ارائه میدهند.
سال انتشار: 2007 | 496 صفحه | حجم فایل: 11 مگابایت | زبان: انگلیسی
نویسنده
Erik D. Demaine,Joseph O’Rourke
ناشر
Cambridge University Press
ISBN10:
0521857570
ISBN13:
9780521857574
قیمت: 16000 تومان
برچسبها: اوریگامی تکنیک های تا کردن کاغذ How can linkages, pieces of paper, and polyhedra be folded? The authors present hundreds of results and over 60 unsolved 'open problems' in this comprehensive look at the mathematics of folding, with an emphasis on algorithmic or computational aspects. Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s, but have only recently been studied in the mathematical literature. Over the past decade, there has been a surge of interest in these problems, with applications ranging from robotics to protein folding. A proof shows that it is possible to design a series of jointed bars moving only in a flat plane that can sign a name or trace any other algebraic curve. One remarkable algorithm shows you can fold any straight-line drawing on paper so that the complete drawing can be cut out with one straight scissors cut. Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from high school students to researchers.
با تشکر ! کتاب خوبی است.