یادگیری آماری و تجزیه و تحلیل الگویی برای پردازش تصویر و ویدئو
قیمت 16,000 تومان
این کتاب مروری جامع بر نظریهها، متدولوژیها، و تحولات اخیر در حوزه یادگیری آماری و تجریهوتحلیل آماری بهمنظور محاسبات و مدلسازی الگوی بصری ارائه میدهد. نویسنده در این کتاب به تشریح و توضیح بنیانهای نظری اساسی پرداخته و خلاصه کاملی از آخرین پیشرفتها و مسائل معمول در این حوزه ارائه میدهد تا منبعی برای ساخت سیستمهای واقعی برای پردازش اطلاعات بصری فراهم آورد.
ازجمله ویژگیهای اساسی این منبع میتوان به ارائه مبانی تشخیص الگوی آماری و یادگیری آماری؛ مباحثه در رابطه با ارائه الگو و طبقهبندی؛ و ارائه بررسی گستردهای از پیشرفتهای اخیر در این حوزه اشاره کرد. این راهنمای جامع در رابطه با سیستمهای هوشمند پردازش اطلاعات تصویری نیز مطالبی ارائه داده است. این کتاب منبعی غنی برای پژوهشگران و دانشجویان تحصیلات تکمیلی برای مطالعه در حوزه یادگیری آماری و تجزیهوتحلیل الگوی بصری میباشد.
سال انتشار: 2009 | تعداد صفحات: 382 | حجم فایل: 12.19 مگابایت | زبان: انگلیسی
Statistical Learning and Pattern Analysis for Image and Video Processing
نویسنده:
Nanning Zheng, Jianru Xue
Why are We Writing This Book? Visual data (graphical, image, video, and visualized data) affect every aspect of modern society. The cheap collection, storage, and transmission of vast amounts of visual data have revolutionized the practice of science, technology, and business. Innovations from various disciplines have been developed and applied to the task of designing intelligent machines that can automatically detect and exploit useful regularities (patterns) in visual data. One such approach to machine intelligence is statistical learning and pattern analysis for visual data. Over the past two decades, rapid advances have been made throughout the ?eld of visual pattern analysis. Some fundamental problems, including perceptual gro- ing,imagesegmentation, stereomatching, objectdetectionandrecognition,and- tion analysis and visual tracking, have become hot research topics and test beds in multiple areas of specialization, including mathematics, neuron-biometry, and c- nition. A great diversity of models and algorithms stemming from these disciplines has been proposed. To address the issues of ill-posed problems and uncertainties in visual pattern modeling and computing, researchers have developed rich toolkits based on pattern analysis theory, harmonic analysis and partial differential eq- tions, geometry and group theory, graph matching, and graph grammars. Among these technologies involved in intelligent visual information processing, statistical learning and pattern analysis is undoubtedly the most popular and imp- tant approach, and it is also one of the most rapidly developing ?elds, with many achievements in recent years. Above all, it provides a unifying theoretical fra- work for intelligent visual information processing applications.