آشنایی با مدل سازی سری زمانی

قیمت 16,000 تومان

خرید محصول توسط کلیه کارت های شتاب امکان پذیر است و بلافاصله پس از خرید، لینک دانلود محصول در اختیار شما قرار خواهد گرفت.
در مدل‌سازی سری زمانی رفتار یک پدیده خاص در ارتباط با مقادیر گذشته‌اش و دیگر متغیرهای کمکی، بیان خواهد شد.
از آنجا که بسیاری از پدیده‌های مهم در تجزیه‌وتحلیل آماری، از نوع سری زمانی هستند و شناسایی توزیع مشروط این پدیده یک بخش ضروری از مدل‌سازی آماری است، یادگیری روش‌های اساسی مدل‌سازی سری زمانی بسیار مفید و مهم به‌نظر می‌آید.
این کتاب با تصویرسازی برای ساخت مدل‌های سری زمانی با استفاده از روش‌های پایه، تعداد زیادی از مدل‌های سری زمانی و ابزارهای گوناگونی به‌منظور سازماندهی آنها را پوشش داده است. این کتاب مدل فضای حالت را به ‌عنوان یک ابزار عمومی برای مدل‌سازی سری زمانی به‌کار برده و به ارائه روش‌ مناسب فیلتر کردن مقادیر بازگشتی ازجمله فیلتر کالمن، فیلتر غیرگاوسی و فیلتر ترتیبی مونت کارلو، پرداخته است.
نویسنده با تمرکز روی تشریح مدل‌سازی، پیش‌بینی و استخراج سیگنال سری زمانی، ابزارهای اساسی تجزیه‌وتحلیل سری‌های زمانی که در مسائل دنیای واقعی بوجود می‌آیند را ارائه داده است.
سال انتشار: 2010  |  تعداد صفحات: 305  |  حجم فایل: 7.02 مگابایت  |  زبان: انگلیسی
Introduction to Time Series Modeling
نویسنده:
Genshiro Kitagawa
ناشر:
Chapman and Hall/CRC
ISBN10:
1584889217
ISBN13:
9781584889212

 

عناوین مرتبط:


In time series modeling, the behavior of a certain phenomenon is expressed in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part of the statistical modeling, it is very important and useful to learn fundamental methods of time series modeling. Illustrating how to build models for time series using basic methods, Introduction to Time Series Modeling covers numerous time series models and the various tools for handling them. The book employs the state-space model as a generic tool for time series modeling and presents convenient recursive filtering and smoothing methods, including the Kalman filter, the non-Gaussian filter, and the sequential Monte Carlo filter, for the state-space models. Taking a unified approach to model evaluation based on the entropy maximization principle advocated by Dr. Akaike, the author derives various methods of parameter estimation, such as the least squares method, the maximum likelihood method, recursive estimation for state-space models, and model selection by the Akaike information criterion (AIC). Along with simulation methods, he also covers standard stationary time series models, such as AR and ARMA models, as well as nonstationary time series models, including the locally stationary AR model, the trend model, the seasonal adjustment model, and the time-varying coefficient AR model. With a focus on the description, modeling, prediction, and signal extraction of times series, this book provides basic tools for analyzing time series that arise in real-world problems. It encourages readers to build models for their own real-life problems.