سئوی داده محور با پایتون؛ حل کردن چالش های سئو با علم داده و با استفاده از پایتون

قیمت 18,000 تومان

خرید محصول توسط کلیه کارت های شتاب امکان پذیر است و بلافاصله پس از خرید، لینک دانلود محصول در اختیار شما قرار خواهد گرفت.
سال انتشار: 2023  |  تعداد صفحات: 277  |  حجم فایل: 11.05 مگابایت  |  زبان: انگلیسی
Data-Driven SEO with Python: Solve SEO Challenges with Data Science Using Python
نویسنده
Andreas Voniatis
ناشر
Apress
ISBN10:
1484291743
ISBN13:
9781484291740

 

عناوین مرتبط:


Solve SEO problems using data science. This hands-on book is packed with Python code and data science techniques to help you generate data-driven recommendations and automate the SEO workload. This book is a practical, modern introduction to data science in the SEO context using Python. With social media, mobile, changing search engine algorithms, and ever-increasing expectations of users for super web experiences, too much data is generated for an SEO professional to make sense of in spreadsheets. For any modern-day SEO professional to succeed, it is relevant to find an alternate solution, and data science equips SEOs to grasp the issue at hand and solve it. From machine learning to Natural Language Processing (NLP) techniques, Data-Driven SEO with Python provides tried and tested techniques with full explanations for solving both everyday and complex SEO problems. This book is ideal for SEO professionals who want to take their industry skills to the next level and enhance their business value, whether they are a new starter or highly experienced in SEO, Python programming, or both. What You'll Learn See how data science works in the SEO context Think about SEO challenges in a data driven way Apply the range of data science techniques to solve SEO issues Understand site migration and relaunches are Who This Book Is For SEO practitioners, either at the department head level or all the way to the new career starter looking to improve their skills. Readers should have basic knowledge of Python to perform tasks like querying an API with some data exploration and visualization.